NORSK REGNESENTRAL

NORWEGIAN COMPUTING CENTER

CLASS AND SUBCLASS DECLARATIONS

by

Ole-Johan Qahl
and
Kristen §ygaard

NORWEGIAN COMPUTING CENTER,
Forskningsveien 1 B,
Oslo 3 - Norway.

CLASS aND SUBCLASS DECLARATIONS

by

Ole-Johan Dahl
and

Kristen Nygaard

Presented at IFIP Working Conference on Simulation
Languages, Oslo, May, 1967.

CLASS AND SUBCLASS DECLARATIONS.

1. Introduction.

A central idea of some programming languages [1,2,3] is to
provide protection for the user against (inadvertantly) making
meaningless data references. The effects of such errors are
implementation dependant and cannot be determined by reasoning
within the programming language itself. This makes debugging
difficult and impractical.

Security in this sense is particularly important in a list
processing environment, where data are dynamically allocated
and de-allocated, and the user has explicit access to data
addresses (pointers, reference values, element values). To
provide security it is necessary to have an automatic de-
allocation mechanism (reference count, garbage collection).

It 1s convenient to restrict operations on pointers to storage
and retrieval. New pointer values are generated by allocation
of storage space, pointing to the allocated space. The
problem remains of correct interpretation of data referenced
relative to user specified pointers, or checking the validity
of assumptions inherent in such referencing. E.g. to speak of
"A of X" is meaningful, only if there is an A among the data
pointed to by X.

The record concept proposed by C.A.R.Hoare and N. Wirth [3]
provides full security combined with good runtime efficiency.
Most of the necessary checking can be performed at compile

time. There is, however, a considerable expense in flexibility.
The values of reference variables and procedures must be
restricted by declaration to range over records belonging to

a stated class. This is highly impractical.

The connection mechanism of SIMULA combines full security with
greater flexibility at a certain expense in convenience and run
time efficiency. The user is forced, by the syntax of the
connection statement, to determine at run time the class of a
referenced data structure (precess) before access to the data

is possible.

The subclass concept ef Hoare [4] is an attempt to overcome
the difficulties mentioned above, and to facilitate the
manipulation of data structures, which are partly similar,
partly distinct. This paper presents another approach to
subclasses, and some applications of this approach.

2. Classes.

The class concept introduced is a remodelling of the record
class concept proposed by Hoare. The notation is an extension
of the ALGOL 60 syntax. A prefix notation is introduced to
define subclasses organized in a hierarchical tree structure.
The members of a class are called objects. Objects belonging
to the same class have similar data structures. The members
of a subclass are compound objects, which have a prefix part
and a main part. The prefix part of a compound object has a
structure similar to objects belonging to some higher level
class. It can itself be a compound object.

The figure below indicates the structure of a class hierarchy
and of the corresponding objects. A capital letter denotes a
class. The corresponding lower case letter denotes the data

comprising the main part of an object belonging to that class.

Classes Objects
A A B C D E
!
/N i a a a a a
B E
/AN b b b e
o D
C d

By Cy Dy E are subclasses of A; C and D are subclasses of B.

2.1 Syntax.

<class id.>::=<identifier>

<prefix>::=<class id.>

<class body>::=<statement>

<main partd>::=class <class id.> <formal parameter part>;
<specification part> <class body>

<class declaration>::=<main part>|<prefix> <main part)

2.2 Semantics.

An object is an instance of a class declaration. Different
instances of the same declaration are said to belong to class

C, where C is the class identifier. If the class body does

not take the form of an unlabelled block, it acts as if enclosed
in an implicit block. The parameters and the quantities
declared local to the outermost block of the class body are
called the attributes of an object. The attributes can be
referenced locally from within the class body, or nonlocally

by a mechanism called remote accessing (5).

The parameters are transmitted by value. One possible use of
the statements of the class body may be to initialize attribute
values.

A prefixed class declaration represents the result of
concatenating the declaration referenced by the prefix and
the main part. The concatenation is recursively defined by
the following rules.

1) The formal parameter lists of the former and the latter

are concatenated to form one parameter list.
2. The specification parts are juxtaposed.

3) A combined class body is formed, which is a block, whose
block head contains the attribute declarations of the
prefix body and the main body. The block tail contains the
statements of the prefix body followed by those of the

main body.

. T

The attributes of the main part are not accessible from within
the prefix body, except by remote accessing. The attributes
of the prefix are accessible as ordinary local quantities from
within the body of the main part.

The object class represented by a prefixed class declaration
is a subclass of the class denoted by the prefix. Subclasses
can be nested to any depth by using prefixed class identifiers
as prefixes to other class declarations.

Let AO be any class. If AO is prefixed, we will denote this

prefix by A1. The prefix of A1 (if any) will be denoted by A
etc.

2

The sequence
A1, AZ’

will be called the "prefix sequence" of AO. It follows from
the syntax that if Ai and Aj both have Ak as prefix, they
have identical prefix sequences.

It will be required that all prefix sequences are finite.
(This excludes multiple occurrence of any class Ai in a prefix
sequence.)

Let

A1’ 2.0:-’ n

be the prefix sequence of AO. We shall say that the class Ai is
"included in Aj” IfT 0Ll € £ 1.

3. Object References.

Reference values in the sense of [4] are introduced, in a
slightly modified form.

3.1 Reference types.

3.17.1 Syntax.

<type>::=<ALGOL type>|ref|ref <qualification>
<qualification>::=(<class id.>)

3.1.2 Semantics.

Associated with each object is a unique value of type ref,
which is said to reference or point to the object. A reference
value may, by qualifying a declaration or specification by a
class identifier, be required to refer to objects belonging

to either this class or any of its subclasses. In addition

the value of any item of type reference is restricted to
objects belonging to classes whose declarations are statically
visible from the declaration or specification of the iten.

The reference value none is a permissible value for any
reference item, regardless of its qualification.

3.2 Reference Expressions.

3.2.1 Syntax.

<simple ref. expr.>::=none|<variable 1>|<function designator>|
<object designator>|<local reference)
<ref. expr.>::=<simple ref. expr.>|if <Boolean expr.> then
<simple ref. expr.> else <ref. expr.>
<object designator>::=<class id.> <actual parameter partd>
<local reference>::=this <class id.>

3.2.2 Semantics.

A reference expression is a rule for computing a reference
value. Thereby reference is made to an object, except if the
value is none, which is a reference to "no object".

3,2.2.1 Qualification.

A variable or function designator is qualified according to
its declaration or specification. An object designator or
local reference is qualified by the stated class identifier.
The expression '"none" is not qualified.

No qualification will be rcegarded as qualification by a universal

class, which includes all declared classes.,

-6 -

3.2.2.2 Object generation.

As the result of evaluating an object designator an object of
the stated class is generated. The class body is executed.
The value of the object designator is a reference to the
generated object. The life span of the object is limited by
that of its reference value.

3.2.2.3 Local reference.

A local reference "this C" is a meaningful expression within
the class body of the class C or of any subclass of C. Its
value is a reference to the current instance of the class
declaration (object).

Within a connection block (5.2) connecting an object of class C
or a subclass of C the expression "this C" is a reference to
the connected object.

The general rule is that a local reference refers to the object,
whose attributes are local to the smallest enclosing block,

and which belongs to a class included in the one specified.

If there is no such object, the expression is illegal.

4, Reference operations.

4.1 Assignment.

4.1.1 Syntax.

<variable 1>::=<reference expr.>

4.1.2 Semantics.

Let the left and right hand sides be qualified by Cl and Cr,
respectively, and let the value of the right hand side be a
reference to an object of class Cv. The legality and effect
of the statement depends on the relations that hold between

these classes.

Case 1. Cl includes Cr: The statement is legal, and the

assignment is carried out.

- 7w

Case 2. Cl is a subclass of Cr: The statement is legal,
and the assignment is carried out if Cl includes Cv,
or if the value is none. If Cl does not include Cv,
the effect of the statement is undefined (cf. 6.1).

Case 3. Cl and Cr satisfy neither of the above relations:

The statement is illegal.

The following additional rule is considered for case 1: The

statement is legal if and only if the declaration of the left
hand item (variable, array or <type> procedure) is within the
scope of the class identifier Cr and all its subclasses.

(The scope is in this case defined after having effected all

concatenations implied by prefixes.)
This rule would have the following conseguences.
1) Accessible reference values are limited to pointers to

objects, whose attributes are accessible by remote
referencing (5).

2) Classes represented bydeclarations local to different
instances of the same block are kept separate.

3) The security problems are simplified.

4.2. Relations.

4.2.1 Syntax.

<relation>::=<ALGOL relation>|<reference expr.>=<reference expr.>|
<reference expr.>#<reference expr.>|
<reference expr.> is <class id.>

4.2.2 Semantics.

Two reference values are said to be equal if the point to the

same object, or if both are none. A relation "X is C" 1s
true if the object referenced by X belongs to the class C or

to any of its subclasses.

4.3 For Statements.

4.3.1 Syntax.

<for list element>::= <ALGOL for list element>|<reference expr.>|
<reference expr.> while <Boolean expr.»

4.3.2 Semantics.

The extended for statement will facilitate the scanning of
list structures.

5. Attribute Referencing.

An attribute of an object is identified completely by the
following items of information:

1) the value of a <reference expr.> identifying an object,

2) a <class id.> specifying a class, which includes that of
the object, and

3) the <identifier> of an attribute declared for objects of
the stated class.

The class identification, item 2, is implicit at run time in
a reference value, however, in order to obtain runtime
efficiency it is necessary that this information is available
to the compiler.

For a local reference to an attribute, i.e. a reference from
within the class body, items 1 and 2 are defined implicitly,
Item 1 is a reference to the current instance (i.e. object),
and item 2 is the class identifier of the class declaration.

Non-local (remote) referencing is either through remote
identifiers or through connection. The former is an adaptation
of the technique proposed in [2], the latter corresponds to

the connection mechanism of SIMULA [1].

5.1 Remote Identifiers.

5.1.1 Syntax.

<remote identifier>::=<reference expr.>.<identifier>
<identifier 1>::=<identifier>|<remote identifier>

- 9 =

Replace the meta-variable <identifier> by <identifier 1> at
appropriate places of the ALGOL syntax.

5.1.2 Semantics.

A remote identifier identifies an attribute of an individual
object. Item 2 above is defined by the qualification of the
reference expression. If the latter has the value none, the
meaning of the remote identifier is undefined (cf. 6.2).

5.2 Connection.

5.2.1 Syntax.

<connection block 1>::=<statement>
<connection block 2>::=<statement>
<connection clause>::= when <class id.> do <connection block 1>
<otherwise clause>::=<empty>| otherwise <connection block 2>
<connection part)::=<connection clause)]
<connection part> <connection clause>

<connection statement>::= inspect <reference expr.> do

<connection block 2> |

inspect <reference expr.>

<connection part)> <otherwise clause>

5.2.2 Semantics.

The connection mechanism serves a double purpose:

1) To define item 1 above implicitly for attribute references
within connection blocks. The reference expression of a
connection statement is evaluated once and its value is
stored, Within a connection block this value is said to
reference the connected object., It can itself be accessed
through a <local reference> (3.2.2.3).

2) To discriminate on class membership at run time, thereby
defining item 2 implicitly for attribute references within
8lternative connection blocks. Within a <connection block 1>

-« 10 =

item 2 is defined by the class identifier of the
connection clause. Within a <connection block 2> it is
defined by the qualification of the reference expression
of the connection statement.

Attributes of a connected object are thus immediately accessible
through their respective identifiers, as declared in the class
declaration corresponding to item 2. These identifiers act as
if they were declared local to the connection block. The
meaning of such an identifier is undefined, if the corresponding
<local reference> has the value none. This can only happen
within a <connection block 2>.

6. Undefined Cases.

In defining the semantics of a programming language the term
"undefined" is a convenient stratagem for postponing difficult
decisions concerning special cases for which no obvious
interpretation exists. The most difficult ones are concerned
with cases, which can only be recognized by runtime checking.

One choice is to forbid offending special cases. The user

must arrange his program in such a way that they do not occur,
if necessary by explicit checking. For security the compiled
program must contain implicit checks, which to some extent

will duplicate the former. Failure of a check results in
program termination and an error message. The implicit checking
thus represents a useful debugging aid, and, subject to the
implementor's foresight, it can be turned off for a "bugfree"
program (if such a thing exists).

Another choice is to define ad hoc, but '"reasonable" standard
behaviours in difficult special cases. This can make the
language much more easy to use. The programmer need not test
explicitly for special cases, provided that the given ad hoc
rule is appropriate in each situation. However, the language
then has no implicit debugging aid for locating unforeseen
special cases (for which the standard rules are not

appropriate).

- 11 -
In the preceding sections the term undefined has been used
three times in connection with two essentially different

special cases.

6.1 Conflicting reference assignment.

Section 4.1.2, case 2, Cl does not include Cv: The suggested

standard behaviour is to assign the value none.

6.2 Non-existing attributes.

Sections 5.1.2 and 5.2.2: The evaluation of an attribute
reference, whose item 1 is equal to none, should cause an error
printout and program termination. Notice that this trap will
ultimately catch most unforeseen instances of case 6.1.

7. Examples.

The class and subclass concepts are intended to be general aids
te data structuring and referencing. However, certain widely used
classes might well be included as specialized features of the

programming language.

As an example the classes defined below may serve to manipulate
circular lists of objects by standard procedures. The objects
of a list may have different data structures. The "element"
and "set" concepts ef SIMULA will be available as special cases
in a slightly modified ferm.

class linkages; begin ref (linkage) suc, pred; end linkage;
linkage class linkj begin -
procedure out; if suc # none then
begin pred. suc:= sucj; suc. pred:= pred;
suc:= pred:= none end out;
procedure into (L)j; ref (list) L;
begin if suc # none then out;
suc:= L3 pred:= suc. pred;
suc. pred:= pred. suc:= this linkage end intoj;
end link;
linkage class listy

begin suc:= pred:= this linkage end listj

- 12 -

Any object prefixed by "link" can go in and out of circular
lists. If X is a reference expression qualified by link or a
subclass of link, whose value is different from none, the
statements

X. into (L) and X. out
are meaningful, where L is a reference to a list.

Examples of user defined subclasses are:

link class car (license number, weight);

integer license number; real weightj 5
car class truck (load)s; ref (list) load; .e.oee. s

car class bus (capicity)s; integer capacity;

begin ref (person) array passenger [1 : capacity] ...end;

list class bridge; begin real loadj end;

Multiple list memberships may be implemented by means of
auxiliary objects.

link class element (X); ref X 33
A circular list of element objects is analogous to a "set! in
SIMULA. The declaration "set S" of SIMULA is imitated by

"ref (list) 8" followed by the statement "S:= list".

The following are examples of procedures closely similar to
the corresponding ones of SIMULA.

procedure include (X, S)3 value X3 ref X3 ref (list) S;
if X # none then element (X). into (8S);

ref (linkage) procedure suc (X)j; value X3 ref (linkage) X;

suc:= if X # none then X. suc glse nonej
ref (link) procedure first (S)j; ref (list) S;
first:= S. sucy
Boolean procedure empty (S)3 ref (list) 8;

emptys:s= S. suc = S3;

Notice that for an empty list S "suc (S)" is equal to S,
whereas "first (8)" is equal to none. This is a result of
rule 6.1 and the fact that the two functions have different

qualifications.

- 13 -

8. Extensions.

8.1 Prefixed Blocks.

8.1.1 Syntax.

<prefixed block>::=<block prefix> <main block>

<block prefix>::=<object designator)

<main block>::=<unlabelled block>

<block>::=<ALGOL block>|<prefixed block) |
<label>:<prefixed block>

8.1.2 Semantics.

A prefixed block is the result of concatenating (2.2) an instance
of a class declaration and the main block. The formal parameters
of the former are given initial values as specified by the

actual parameters of the block prefix. The latter are evaluated
at entry into the prefixed block.

8.2 Concatenation.

The following extensions of the concepts of class body and
concatenation give increased flexibility.

8.2.1 Syntax.

<class body>::=<statement>|<split body>

<split body>::=<block head>j;<part 1> inner; <part 2>
<part 1>::=<empty>|<statement>;<part 1>

<part 2>s::=<compound tail)>

8.2.2 Semantics.

If the class body of a prefix is a split body, concatenation

is defined as follows: the compound tail of the resulting class
body consists of part 1 of the prefix body, followed by the
statements of the main body, followed by part 2 of the prefix
body. If the main body is a split body, the result of the
concatenation is itself a split body.

For an object, whose class body is a split body, the symbol
inner represents a dummy statement. A class body must not be

a prefixed block.

1y -

8.3 Example.

As an example on the use of the extended class concept we
shall define some aspects of the SIMULA cencepts "process",
"main program", and "SIMULA bleck". '

Quasi-parallel sequencing is defined in terms of three basic
procedures, which operate on a system variable SV. SV is an
implied and hidden attribute of every object, and may informally
be characterized as a variable of "type label". Its value 1is
either null or a program point [5]. SV initially contains

the "exit" information which refers back to the object
designator. The three basic procedures are:

1) detach. The value of SV is recorded, and a new value,
called a reactivation point, i1s assigned referring
to the next statement in sequence. Control
proceeds to the point referenced by the old
value of SV. The effect is undefined if the
latter is null.

2) resume(X); ref X. A new value is assigned to SV referring
to the next statement in sequence. Control
proceeds to the point referenced by SV of the
object X. The effect is undefined if X.SV 1is
null or if X is none. null is assigned to X.SV.

3) goto(X)3; ref X. Control proceeds to the point referenced
by SV of the object X. The effect is undefined
if X.8V is null or if X ¢s none. null is

assigned to X.SV.
class SIMULAj begin
ref(process)current;
class process; begin ref(process)nextevs; real evtimes
detachy inner; current:=nextevs goto(nextev)end;

procedure schedule(X,T); ref(process)X; realT;

begin X.evtime:=T§ ----===-=--=- ends
process class main programi begin

L:resume(this SIMULA)j go to L end;
schedule(main program, O)end SIMULA

- 15 -

The "sequencing set" of SIMULA is here represented by a simple
chain of processes, starting at "current", and linked by the
attributes '"nextev'". The "schedule" procedure will insert the
referenced process at the correct position of the chain,
according to the assigned time value. The details have been
omitted here.

The "main program" object is used to represent the SIMULA
object within its own sequencing set.

Most of the sequencing mechanisms of SIMULA can, except for the
special syntax, be declared as procedures local to the SIMULA
class body.

Examples:

procedure passivatej begin currents:=current.nextev;

resume(current)ends
procedure activate(X); ref Xs; inspect X when process do

begin nextevi=currentj evtime:=current.evtimes
current:=this processj; resume(current)end;
procedure hold(T); real T; inspect current do

begin current:=nextevj schedule(this process, evtime+T);
resume(current)end;

Notice that the construction "process class" can be regarded

as a definition of the symbol "activity" of SIMULA. This
definition is not entirely satisfactory, because one would like
to apply the prefix mechanism to the activity declarations
themselves.

9. Conclusion.

The authors have for some time been working on a new version

of the SIMULA language, tentatively named SIMULA 67. A compiler
for this language is now being programmed and others are
planned. The first compiler should be working by the end of
this year.

As a part of this work the class concept and the prefix
mechanism have been developed and explored. The original

purpose was to create classes and subclasses of data structures

- 16 -

and processes. Another useful possibility is to use the class
concept to protect whole families of data, procedures, and
subordinate classes. Such families can be called in by
prefixes. Thereby language '"dialects" oriented towards special
problem areas can be defined in a convenient way. The
administrative problems in making user defined classes generally
avallable are important and should not be overlooked.

Some areas of application of the class concept have been
illustrated in the preceding sections, others have not yet
been explored. An interesting area is input/output. In
ALGOL the procedure is the only means for handling I/0.
However, a procedure is generated by the call, and does not
survive this call. Continued existence, and existence in
parallel versions is wanted for buffers and data defining
external layout, etc. ©System classes, which include the
declarations of local I/0 procedures, may prove useful.

The SIMULA 67 will be frozen in June this year, and the current
plan is to include the class and reference mechanisms described
in sections 2 - 6. Class prefixes should be permitted for
activity declarations. The "element" and "set'" concepts of
SIMULA will be replaced by appropriate system defined classes.
Additional standard classes may be included.

SIMULA is a true extension of ALGOL 60. This property will
very probably be preserved in SIMULA 67.

References.
ot

1.

- 17 =

0.-J. Dahl and K. Nygaard: "SIMULA - a Language for
Programming and Description of Discrete Event Systems.
Introduction and User's Manual". Norwegian Computing
Center, Oslo 1965.

C.A.R. Hoare: "Record Handling". ALGOL Bulletin
21, November 1965.

C.A.R. Hoare, N. Wirth: "A Contribution to the
Development of ALGOL". Comm. of the ACM, June 1966.

C.A.R. Hoare: "Record Handling". Lectures delivered
at the NATO Summer School, Vilard-de-Lans, September 1966.

P. Naur: "The Design of the GIER ALGOL Compiler"
BIT. Vol. 3, no. 2,3.

P. Naur, ed: "Report on the Algorithmic Language
ALGOL 60".

Class and Sub-Class Declarations.

Abstract

by 0.~J. Dahl and K. Nygaard.

The remote referencing of attributes of objects (processes) in
SIMULA is awkward whenever processes belong to similar, but not
identical classes (activities). A class declaration is proposed
as a remedy and a possible extension of SIMULA.

For processes with similar attributes the latter are grouped
together by a class declaration. They are included among the
process attributes by prefixing the activity declaration by the
appropriate class identifier. A class idenrifier can also be used
as a prefix to another class declaration.

Reference variables in the sense of C.A.R. Hoare are introduced.
The element concept of SIMULA can normally be dispensed with.
Standardized set operation can be achieved by using the (system
defined) class identifier "link" as prefix to activity and class
declarations, where

class link; begin reference suc, pred; end;

The concept of system defined classes seems to be an important
means of enriching & general purpose language and also for

structuring it towards specialized fields of application.

