2.

Proposals for Consideration by the SIMULA 67

Common Base Conference, June 1967

by
Ole-Johan Dahl and Kristen Nygaard.

Introduction

Since the "SIMULA 67 Common Base Proposal', [4] was published,
the authors have been working on the problem of in-line declara-
tions: It turns out that a more consistent language may be
obtained by adopting another approach than given in [4].

There has been a desire to transfer the <type> procedure concept
over to the class declaration, preferably allowing generalizations
to types other than the basic ones. A solution to this problem
is presented in this paper.

Both these considerations make it necessary to be able to define
operations on non-basic types in a flexible way.

At the IFIP Working Conference on Simulation Languages the
gquestion of side-effects to operations on objects belonging

to basic types was much discussed. It turns out that this and
the above problems are connected, and a unified solution is
given in this paper.

The solution is inspired by the GPL language designed by J.V.
Garwick. In order to avoid excessive cross-referencing, this
paper also repeats the relevant parts of the "SIMULA 67 Common
Base Proposal".

SIMULA 67 Common Base is a true extension of ALGOL 60 (1),

except that the own concept 1s deleted, integer labels are not
allowed, and parameter specifications are required. The
extensions are defined by reference to the documents (2) and (3).

Tvpe Declarations

2.1 Syntax

<basic type>: := real|integer|Boolean|string| ref|ref<qualification>
<qualification>: :=<type> :

<type>: := <basic type> |<class id.>

<in-line object>: := <identifier><actual parameter part>

<type declaration>: := <type><in-line object> | <type declaration>,
<in-line object>.

2.2

3.
3.1

3.2

Semantics

In addition to the basic types,composite types can be defined
by class declarations. A class identifier can be used as a
type declarator, provided that the class body contains no
assignment of a <local reference>. The classes "link", "set",
"process" and "SIMULA" are examples of classes which may not
be used as type declarators.

Variables of the five basic types are initialized by implied
class bodies to the respective values "O", "O", "false", blanks

and "none'.

The declaration of an in-line object causes the execution of
the corresponding class body. The generated object becomes

an integral part of the data structure local to the block in
which the declaration occurs. The actual parameters of in-line
objects are specified separately for each declared identifier.

Expressions

Syntax

<expression>: := <arithmetic expr.>|<Boolean expr.>|<string expr.>|
<reference expr.>|<reference expr.>.
<function designator>: := <procedure id.><actual param.part>|
<class id.><actual param.partd>.

Semantics

An expression is a rule for computing a value (which is an object)
of either a basic or composite type. In the latter case the

value belongs to a declared class. There is a distinction between
a value which is an object and a value of type ref referring

to the same object.

A reference expression followed by a "dot" (.) denotes the object
referenced by the reference value. If the reference value is
none the result is undefined.

A function designator referring a class declaration has a value
which 1s a generated object belonging to the class. The class
body is executed as part of the evaluation.

3.2.1

3.3.

- 3 =

Parameter Correspondence

The type of an actual @Wﬁmamdmw should be a class included

in the one specified for the corresponding formal parameter.
If the latter is specified to type "ref (C)" the actual para-
meter should be of type "ref (D)" (or any subclass of ref (D),

where D is included in C.

Opnertions on Composite Values

Operations on a non~basic object can be defined by wmoom@sHm
declarations local to the object. There is a one to one corre-
spondence between operators and identifiers, according to the
following list:

becomes

it

-+

plus

- minus
malt
div
divint
power

Ho=~% 8 X

equal
unequal
greater
greateq
less
lesseq
and

or

U < >N A MV R

implies

equivalent

i

The basic types are thought of as classes containing local
declarations of the relevant procedures from the above list.
Each operator is defined by source language transformations

of the following type:
a op b—> a' op(b)

where "op" is an operator and "op" is the corresponding
procedure identifier. The apostrophe (') is an operator
which gives access to guantities local to the value of the
preceding expression, see next section, amendment to (3), 5.1.

To 2.2

To 3.1.1

To 3.2.1

To 3.2.2
3.2.2.4%

To 4%.2.1

To 4,2.2

-4 -

Classes and References

SIMULA 67 should include all concepts described in (3),
sections 2-6 and 8. The following amendments should be
made:

Additiin to first paragraph, pP.%. "...... provided that the
corresponding identifiers have not been redeclared within
the main part. Redeclaration of an attribute identifier will
supercede within the main part the declaration given in the
prefix, but will have no effect for its meaning within the
prefix body".

Should be substituted by the two first definitions in 2.1 in
this paper.

Replaced by

¢simple ref.expr.>::=pone|<variable 1>|<function designator>|

<object designator>|<local reference>]|
<remote referenced>
<ref.expr.>::=<simple ref.expr.>|if<Boolean expr.> then
<simple ref.expr.> else <ref.expr.>

<object designator)»::=new<class id.><actual parameter part>

<local referenced>::=this<type>

<remote reference<::=<reference expr.>.this<type>

Add new sub-section:

Remote Reference

A remote reference "E.this C" is a reference expression, whose

value is that of E. C serves as the qualification of the
expression. It will supercede any qualification inherent in
E. A runtime error will occur if the value of E is none, or

if the referenced object does not belong to a class included
in C.

Add as new alternative:

<reference expr.><class op.><reference expr.>
where

<class op.>::=>|>|¢ |¢<|=|#F

Add at the end «of the section:

A <class op.> compares the class memberships of the operands.
E.g. "X>Y" 1s true if the class of Y is a subclass of and

different from the class of X. The operators "=" and "f"
compare identity of objects.

To 5.

To 5.1

5.1.2

-5 -

Replace main section by:

An attribute of an object is identified completely by the
following items of information:

1) An object identification.

2) a <class id.> specifying a class, which includes that of
the object, and v

3) the <identifier> of an attribute declared for objects of
the stated class.

The class identification, item 2, must be available at compile
time, in order to obtain run time efficiency.

Fora local reference to an attribute, i.e. a reference from
within the class body, items 1 and 2 are defined implicitly.
Item 1 is the current instance (i.e. object), and item 2 is
the class identifier of the class declaration.

Non-local (remote) referencing is either through component
identifiers or through connection. The former 1is ms.mmm@wmdwob
of the technique proposed in (2), the latter corresponds to the
connection mechanism of SIMULA (1).

Replace whole subsection by

"5.1 Components

5.1.1 Syntax

<component identifierd>::=<expression>'<identifier>
<identifier 1>::=<identifier>|<component identifier>

wmwwwom the meta-variable <identifier> by <identifier 1> at
appropriate places of the ALGOL syntax. The above syntax

is simplified by omitting the apostrophe if the <expression> is
a reference expression followed by a dot.

Semantics

A componenet identifier identifies an attribute of an indivi-
dual object. Item 2 above is defined by the type of the
<expression> whose value is item 1. (If the expression is a
reference expression followed by a dot, the type is defined
by the qualification).

To 5.2.1

To 5.2.2

To 6.2

-6 -

Replace "otherwise<connection block 2>"
by "otherwise<statement>"

Replace last sentence by:

"The result of entering a <connection block 2> is undefined
if the reference expression has the value none'".

Replace by:
Non-existing objiect

The application of the dot operator to the reference value none

should cause an error printout and program termination. Also
the entering of a <connection block 2> should cause a runtime
error if the reference expression of the connection statement
has the value none.

The SIMULA Class

The symbol SIMULA is thought of as a system defined class.
In addition to introducing a number of procedure and class
declarations (see below) the SIMULA prefix also introduces
special syntax for scheduling statements.

The semantic contents of the process concept is as defined in
2, with the following modifications:

1) A process is an object whith an associated reference value.
There is no implied element concept as in (2).

2) The declarator activity is replaced by the construction
"process class'.

A formal definition of the class "process'" can be given in
terms of the extended class concept of (3), as outlined in
(3),8.3. The process class shall have the prefix "link" (see
below).

FElements and Sets

Elements and sets will be implemented as classes declared in
the SIMULA class:

-7 -

1. class linkage; begin ref (linkage) succ, prede; end;

2., linkage class linkg

begin procedure out;

if succ ¥ nome then begin

succ.prede := predej pred.succ := succ;
succ := prede := none ends
procedure follow (X)j; value X3 ref (linkage)X;

begin outs;
if X # none AX.succ ¥ none then begin
c

prede := X3 succ := X.succj
X.succ.prede := X.succ := this linkage end end;

procedure precede (X)j; value X3 ref (linkage)X;

begin outs
if X 4 none AX.succ F none then begin

succ := X3 prede := X.prede;

N.@ﬁmam,mSoo“nx.wwmam”uﬁﬁwmwwswmmmmbmmbam
procedure into (S); value S; ref(set)S;

begin outs succ := S prede := S.prede;
S.prede.succ := S.prede := this linkage end;

ref (link) procedure sucj suc := succ;
ref (link) procedure pred; pred := prede;
end links

3. link class element (object); ref objects;

4, 1linkage class set;
begin ref (link) procedure first; first := succy

ref (link) procedure lastj; last := prede;

Boolean procedure emptys; empty :¢= succ = prede;

integer procedure cardinalj

begin integer ij ref (link) X3 i := O

for X := first, X.suc while X is link do 1 := i+l;

-

cardinal := i ends;

procedure clear:
begin ref (link) X
for X := first while X is link do X. out endj;

- 8 -

ref (element) procedure member (X); value Xj; ref X;
begin ref (element) Y; member := none;

for ¥ := first, Y.suc while Y is link do
if Y.object = X then begin member := Y; go to fin

fin: end:

succ := prede := this linkage

end set;

It is important to provide security in the operation on sets.

The following ad hoc rule should be applied to variables
of type ref(set): The value none is illegal, and they are

initizlized to the value "new set". This rule will reduce
the amount of run-time checks on this type.

The following SIMULA I procedures will not be implemented:
proc(X): substituted by the generative expression element (X)
head(S): no meaning within SIMULA 67

suc(X): substituted by "suc" local to "link"

pred(X): substituted by "pred" local to "link"

same(X,Y): of little interest since elements are not a basic
part of SIMULA 67.

similar(X,Y), X=Y and X ¥ Y will be substituted by Boolean
expressions.

pred(X,Y): substituted by "precede" local to "link"
remove(X)s: substituted by "out" local to '"link"
first(S): substituted by "first" local to '"set"

last(S): substituted by "last" local to "set"
successor(n,X): omitted since 1t has not been proved useful
: in SIMULA T.

number(n,S): as for successor (n,X)
member(X,5): substituted by "member" local to "set"

exist(X): substituted by X = none, since '"sethead" does not
appear in SIMULA 67

empty(S): substituted by "empty" local to "set"

ordinal(X): omitted since it has not been proved useful in
SIMULA I. Also inefficient in execution. May
be user defined if necessary.

cardinal(S): substituted by "cardinal" local to ''seg"
precede(X,Y): substituted by "precede" local to "link"
follow(X,Y): substituted by "follow" local to "link"
transfer(X,S): substituted by "into" local to "link"
include(X,S): substituted by "into" local to "link"

clear(S): substituted by "clear"™ local to "set!

The varigbles "succ" and "prede" local to "linkage" will
not be available to the user,

Seguencing

Chapter 4 in the SIMULA I manual will apply inside the SIMULA
class with some exceptions:

The event notices will refer directly to processes, not through
elements.,

The statement go to L will be undefined if the label is not
local to the current process.

In all sequencing statements the element expression in (2)
are replaced by ref (process) expressions.

Random Drawing

SIMULA 67 specifications correspond to Chapter 7 in SIMULA I
manual, 4th edition.

Data Analysis

SIMULA 67 specifications correspond to Chapter 8 in SIMULA I
manual, 4th edition, except for the "hprint" procedure which
should not be considered as a part of SIMULA 67 Common Base.

- 10 -

10. . Extensions

The following extensions should be discussed for inclusion
in the SIMULA 67 Common Base.

10.1 Seguencing

Simple basic statements for quasi-parallel sequencing are
described in (3),8.3. For security reasons the statements
resume(X) and goto (X) should not be available within a
SIMULA block.

10.2 Virtual Quantities-

The parameters to a class declaration are called by value.
Call by name is difficult to implement with full security
and good efficiency. The main difficulty is concerned with
the definition of the dynamic scope of the actual parameter
corresponding to the formal name parameter. It is felt that
the cost of an unrestricted call by name mechanism would in
general be out of proportion to its gain, and that it would
represent an invitation to misuse computers.

The virtual quantities described below represent another
approach to call by name in class declarations The mechanism
provides access at one prefix level of the prefix sequence of
an object to guantities declared local to the object at lower
levels.

10.2.1 Syntax

<class declaration>::=<prefix><class declarator><class id.>
<formal parameter part>;
<gpecification part><virtual partd>
<class body>

<virtual part>::=<empty>|¥irtual:<specification part>

10.2.2 Semantics

The identifiers of a <virtual part> should not otherwise occur
in the heading or in the block head of the class body. Let >Hw
.a.....wbﬁ be the prefix sequence of bo and let X be an identi-
fier occuring in the <virtual part> of >M, If X identifies a
parameter of bu pr a quantity declared local to the body of

buw j<i, then for an object of class A, identity is established
between the virtual quanitity X and the quantity X local to bu.
If there is no A., j<i, for which X is local, a reference to the

J
virtual quantity X of the object constitutes a run time error.

REFERENCES

1. P. Naur, ed.: "Revised Report on the Algorithmic Language
ALGOL 60".

2. 0-~J. Dahl and K. Nygaard: "SIMULA - A language for pro=
gramming and description of discrete event
systems. Introduction and users' manual'.
Norwegian Computing Center, 4th edition,
Oslo, April 1967.

3. 0<«J. Dahl and K. Nygaard: "Class and sub-class declarations".
Paper for the IFIP Working Conference in
0slo, May 1967. Norwegian Computing Center,
March 1967.

4, 0-J. Dahl and XK. Nygaard: "SIMULA 67 Common Base Proposal".
Norwegian Computing Center, May 1967.

