Kristen Nygaard

Nygaard, K. (1963b) April 17. Letter to C. A. Christopher, Director of Procurement, Univac (C).

Nygaard, K. (1963c) May 18. Letter to A. M. Paster, Manager Systems Research, Univac, New York. (C).

Nygaard, K. (1963d). A Status Report on SIMULA—A Language for the Description of Discrete-event Net-
works. In Proceedings of the Third International Conference on Operational Research, pp. 825-831. Lon-
don: English Universities Press. (P).

Nygaard, K. (1963e) September 19. Opparbeidelse av kompetanse innenfor Real-time Systemer (Building up
competence on real-time systems). Note, in Norwegian. (D).

Nygaard, K. (1965a) August 15. The Software Contract between UNIVAC and the Norwegian Computing Cen-
ter. NCC Doc. (D).

Nygaard, K. (1965b). Report on the use of SIMULA up to December 1965. NCC Doc. (D).

Nygaard, K. (1966) February 17. Letter to S. M. Haffter, Univac Sperry Rand Corporation, Lausanne. (C).

Nygaard, K. (1967) November 3. Letter to C. A. R. Hoare, Elliott-Automation Computers, Herts., England. (C).

Nygaard, K. (1968a) January 29. Letter to Niklaus Wirth, Rechenzentrum der Universitét, Ziirich. (C).

Nygaard, K. (1968b) April 2. En redegjorelse for samarbeidet mellom Det russiske vitenskapsakademi og Norsk
Regnesentral om bruk av programmeringssprdket SIMULA i Sovjet (An account of the cooperation be-
tween the Russian Academy of Science and the Norwegian Computing Center on the use in the Soviet Union
of the programming language SIMULA). Note, in Norwegian. (D).

Nygaard, K. (1968c) September. Oversikt over NR’s SIMULA-engasjement (Survey of NCC’s commitment to
SIMULA). Note, in Norwegian. (D).

Nygaard, K. (1968d) September. Markedsfpring av SIMULA 67 (Marketing of SIMULA 67). Note, in Norwe-
gian. (D).

Nygaard, K. (1969) September 26. Letter to Peter Weil, Manager, Contracts and Pricing, Univac, England.
©). .

Nygaard, K., and Dahl, O.-J. (1965). SIMULA—A Language for Describing Discrete Event Systems. In Pro-
ceedings of the IFIP Congress, 65, Vol. 2, pp. 554—555. Washington, D.C.: Spartan Books; New York:
Macmillan. (P).

Palme, J. (1968). A comparison between SIMULA and FORTRAN. BIT 8:203-209. (P).

Paster, A. M. (1962) October 12. Letter to Kristen Nygaard, NCC. (C).

Reitan, B. (1969) September 4. Letter to Kristen Nygaard, NCC. (C).

Roach, (1963) July 3. Telegram to Kristen Nygaard, NCC. (C).

Ross, D. T., and Rodriguez, J. E. (1963). Theoretical Foundations for the Computer-aided Design System. In
Proceedings of the SJCC, p. 305. (P).

SIMULA Standards Group (1968).Report from the meeting of the SIMULA Standards Group, held in Oslo, Nor-
way, February 10, 1968. (D).

Statutes (1967) May 23. Statutes for the SIMULA Standards Group. NCC Doc. (D).

Stevenson, F. (1967) November. LOGIC, A computer program for simulation of digital logic networks. NCC
Doc. (D).

Tocher, K. D. (1963). The Art of Simulation. London: English Universities Press. (P).

Wang, A., and Dahl, O.-J. (1971). Coroutine Sequencing in a Block Structured Environment. BIT 11: 425-449.
P).

Wegner, P. (1976) December. Programming Languages—The first 25 years. IEEE Transactions on Computers
C-25(12): 1207-1225. (P).

Weizenbaum, J. (1962) March. Knotted List Structures. CACM 5(3): 161-165. (P).

Wirth, N. (1968) February 14. Letter to Kristen Nygaard, NCC. (C).

TRANSCRIPT OF PRESENTATION

BaRBARA Liskov: Our speaker on SIMULA will be Kristen Nygaard. At the time that
SIMULA was developed, Kristen Nygaard was the Director of Research at the Norwe-
gian Computer Center, and apart from his work on SIMULA he was also responsible for
building up the NCC, as it’s called, as a research institute. He had been working in com-
puting since 1948, and in Operations Research since 1952. Today, Kristen Nygaard, con-

480 Part IX

Transcript of Presentation

tinues as Director of Research at NCC, but directs only his own projects. He also holds
the rank of Professor at the University of Oslo, and his current research interests include
programming languages and the social aspects of computing.

KRISTEN NYGAARD: During the writing of the paper for this conference, the authors had
an abundance of letters from Jean Sammet and the language coordinators, but little com-
munication between themselves. As it turns out, we have each chosen our own style.
Those of you who have read our paper will know that it at least partially is in the form of
an “‘action thriller.”> We are not certain whether it is fun to read or not, but it was on the
point of becoming funnier. Two slides illustrate this.

Frame 1 shows a typical passage from the paper—from the ‘‘Greek nightclub episode.”
Observe the words ‘‘watching a beautiful belly dancer.”

Quotation from the Greek
— night club episode
(final version):

““While they were listening to
bouzouki music, watching a
beautiful belly dancer, Nickitas
presented the following informal
proposal,....”"

Frame 1

Now observe the next to final version of the manuscript, (corrected at the last minute) in
which we are not content with passive observation [Frame 2].

Also, our very competent typist felt that the sex angle was not sufficiently well handled.
Her feeling materialized in terms of a very resolute insistence on writing SINSCRIPT in-
stead of SIMSCRIPT (a prominent language which to our regret is not presented at this
conference).

When one looks at one’s own work at a distance, one is able to sort out the essentials
and talk briefly. Having had the rather large job of writing our paper, we are in trouble
because the SIMULA development once more has become very close. To sum up seven
years of rather hard work in 25 minutes has become a difficult task; therefore, you must
excuse me for using a manuscript. I will close my lecture with acknowledgments of some
persons and one important activity outside of our own effort.

I will start by stating that SIMULA was, and is, a collective effort by many persons.
SIMULA exists as a living language with an active user community, and the reason is a
series of good implementations by some exceptionally competent teams. I admired the
way in which John Backus brought his team members into the picture, and I wish that I

Quotation from the Greek

night club episode

(original version):

*‘While they were listening to
bouzouki music, washing a
beautiful belly dancer, Nikitas
presented the following informal
proposal,....”"

Frame 2

SIMULA Session 481

Kristen Nygaard

had been able to do the same thing. I want to mention one name, however, that of Bjérn
Myhrhaug, who designed SIMULA'’s string-handling and input—output; Ole-Johan Dahl
and I very much would have liked to see him here.

SIMULA did not start as a programming language, and during all of its development
stages reasoning outside traditional programming played an important part in its design.
The first ideas came from operational research. My own work in that field told me that we
needed a set of concepts and an associated language in terms of which one could under-
stand and describe the complexity of the systems one had to deal with. It was also evident
that simulation had to be the main tool for analysis. Consequently, from the very start in
1961, SIMULA was labeled both a system description language and a simulation program-
ming language.

I was working within operations research, and had at the time lost contact with pro-
gramming after leaving that field in 1954. I realized that I was not competent to design such
a language alone, and since I knew Ole-Johan from my time at the Norwegian Defense
Research Establishment, I tried to get him interested. I succeeded, and from then on, and
through all the important development stages of SIMULA we worked together. It is im-
possible, even just between us, to find out who was responsible for which language con-
cept. This may sound like a beautiful pastoral scene of peaceful cooperation. It was not.
And the following story is true:

In the spring of 1967 a new employee at the Norwegian Computing Center came running
into the telephone exchange and, very shocked, told the operator: ‘“Two men are fighting
in front of the blackboard on the first floor corridor!”” The operator went out of her cubi-
cle, listened for a few seconds, and said, ‘‘Relax—it’s only Ole-Johan and Kristen discus-
sing SIMULA!”’

When we started, Ole-Johan knew much about programmmg and next to nothing about
systems thinking. I knew something about systems and next to nothing about program-
ming. Today Ole-Johan knows much about systems thinking.

SIMULA started from a mathematically oriented concept of a network consisting of
passive customers flowing through a network of active stations. However, we realized
that the processing and decision rules to be described and simulated made it necessary
that the language, quoting from a very early document, ‘‘had to include a general algorith-
mic language such as ALGOL or FORTRAN.”’ John Backus said in his speech yesterday
that language design was a relatively easy part of the task. I understood him that way.
That was not the case with the two SIMULA languages. It was a long and tedious process
of working and reworking our concepts before we gradually arrived at the SIMULA of
today.

At this point I want to mention another important aspect of our method of working. We
always discussed how to implement as we went along, and never accepted anything unless
we knew it could be implemented efficiently.

Our network concept dissolved for two reasons: we discovered that we could regard the
networks as consisting of active customers and passive stations equally well as the oppo-
site, what we labeled a ‘‘dual view.”” We then realized that an in-between approach in
many situations was very useful, and also discovered many situations which couldn’t be
described well by the network concept.

At this stage, the influence of ALGOL 60 became more and more prominent. It had at
earlier stages been both an inspiration and an obstacle. We found the stack to be the obvi-
ous way of organizing a system component’s action sequence. We believed, and it is spe-

482 Part IX

Transcript of Presentation

cifically stated in our SIMULA contract with Univac, that we should implement SIMULA
through a preprocessor to ALGOL 60. '

In the spring of 1963 we were almost suffocated by the single-stack structure of
ALGOL. Then Ole-Johan developed a new storage management scheme in the summer
and autumn of 1963. The preprocessor idea was dropped, and we got a new freedom of
choice. In February 1964 the process concept was created, which is SIMULA 67’s class
and object concept (but integrated at that time in simulation facilities, and without a sub-
class feature).

Frame 3 sums up some essential facts about SIMULA I. When we moved on to
SIMULA 67 we had realized that SIMULA also was a powerful general programming lan-
guage. Sometimes it is remarked that SIMULA’s usefulness as a tool for implementing
data types was a welcome lucky coincidence. I do not agree because many of the uses to
which SIMULA has been put are the logical and necessary consequences of the system
approach married to the ALGOL block concept.

It is true, however, that we did not grasp all of the implications of SIMULA at the time
of creating its concepts. The transition from SIMULA I to SIMULA 67 is described in our
paper, and I only want to summarize this by the next slide [Frame 4]. When we developed
SIMULA we were not concerned with most of the questions which were essential to the
ALGOL 60 fathers. We more or less took the algorithmic capabilities of ALGOL 60 for
granted. Alan Perlis said to me yesterday that we should have developed SIMULA as the
common superstructure for both ALGOL, FORTRAN, and possibly other languages.
That was also our initial idea. But as our insight in what we regarded as a proper systems
approach increased, this became more and more impossible. The ALGOL block concept
which, with its integration of data, patterns for actions (procedure declarations) and ac-
tions became the cornerstone of our thinking. ‘

At this stage, I want to illustrate what I mean by “‘system thinking.”> Our main reference
frame was a set of examples of systems in the world around us: job shops, airports, epi-
demics, harbors, etc. For this reason, the dynamic systems created by the program execu-
tion was first and foremost a model of the system described by the program. This reason-
ing was carried over to our understanding of more traditional parts of programming as
well. Let us examine this approach in a little more detail.

In Frame 5 a sketch of an ALGOL program is showed on the left and a simplified model
of the corresponding program execution on the right. What is physically generated is orga-
nized as a stack. Systems which may be usefully thought of as such stacks, are described
conveniently by ALGOL. Frame 6 states this with other words.

Moving on to SIMULA, each component, now called an ‘“‘object’’ in our model system
(the program execution) is itself a stack. And therefore what is SIMULA? Here we have a

SIMULA I

developed:
June 1961-March 1964

design objectives:
system description
simulation programming

basic feature:
the process concept

Frame 3

SIMULA Session 483

Kristen Nygaard

SIMULA 67

developed:
December 1966—January 1968

design objectives:
system description
high level programming
application languages
(e.g. simulation)

‘ basic features:
the object/class concept
prefixing and subclasses
the virtual concept

Frame 4

number of stacks with the static enclosures, and SIMULA is the world regarded as a
nested collection of interacting stacks [Frame 7]. When we examine what was new in
SIMULA 67, two main and interrelated features were prefixing and virtual procedures.
The prefixing with block concatenation made it possible for us to use Tony Hoare’s ideas
of reference qualification, and still keep the flexibility we wanted. It also provided the pos-
sibility of building up hierarchies of concepts [Frame 8]. As you know, using prefixing by
Class A, an object of Class B contains an A, and its prefix and main parts are glued to-
gether as one integrated block instance.

Program text Program execution

BEGIN REAL X; X REAL 2.12
SL
PROCEDUREP; block
..... § instance
I statement 1;
statement 2; DL
.....
BEGIN INTEGER Y
statement 3; Y INTEGER 6
P;
block
statement 4 instance
END; \
! statement 5 DL
I END;
[P oo
‘ block
instance
\
i DL ======- : dynamic link
| SL =——— : static link
Frame 5

484 Part IX

Transcript of Presentation

e e

_ o

Frame 6. ALGOL 60—the world regarded as a stack of block instances.

One thing which should be mentioned in passing is that we tried by a last minute desper-
ate effort to get a type concept into SIMULA 67 (in terms of in-line types). We did not
succeed for reasons which are explained in our paper.

My last visit to the U.S. was in 1970. At that time the class concept only had a certain
curiosity and entertainment value. I except people like Don Knuth, John McNeley, Bob
Bemer, Al Paster, and some others. Today it’s interesting and pleasant to observe that the
situation is different. But—and there is a “‘but” —I still think that many people who refer
to SIMULA only grasp parts of it. In fact, those who understand SIMULA best are not
the people in programming research, but rather SIMULA’s simulation users. The com-
puter scientists like SIMULA as a vehicle for implementing data types. But many of them
have never discovered the use and implication of the class/subclass feature. If they have,
most have not exploited the virtual concept. And only very few, including Tony Hoare
and Per Brinch Hansen, have realized what I feel is the most important property of
SIMULA, that it is a multistack language. The computer-based systems we now have to

Frame 7. SIMULA—the world regarded as a nested collection of interacting stacks.

SIMULA Session 485

Kristen Nygaard

prefixing

LA HPe
CEADS Ay block }A

REF (M) X; instance

A CLASSB; ... block A
REF (B) Y; oc
B

instance

Y:-NEW B

Frame 8

implement are networks of human beings, production equipment and computing equip-
ment. For these systems I'm convinced that SIMULA’s multistack framework is useful.

When I planned this presentation, I expected to use much of my time in discussing
SIMULA politics. As I wrote along, my mind changed, as you have observed. Politics
was, however, an essential part of the SIMULA venture, and it is described in detail in our
paper. I will conclude my speech by pointing out what I feel were the most essential politi-
cal elements of that venture.

When SIMULA 67 was developed, the Norwegian Computing Center employed ap-
proximately 120 persons. Of these 120, three persons could be assigned to language devel-
opment. Backus told us that he got the resources he wanted. Grace Hopper’s situation
was more like ours. [Refer to the FORTRAN and Keynote presentations. Ed.] In 1962
we were told that (1) there would be no use for SIMULA; (2) there would be use, but it
had been done before; (3) we would not succeed; (4) we should not make such efforts in
a small and unimportant country like Norway.

In 1967 we were told that SIMULA was wonderful, but the lifetime of a programming
language was only three to five years, and we have to earn back our expenses during that
time period.

We had very small resources, and we had to fight for them. We wanted SIMULA to be
an ‘‘existing’’ language, and our definition of that term is given on Frame 9.

These were our ambitions. To achieve these objectives, we needed the compilers to be
of ‘‘high standard,”’ a term which is defined on Frame 10.

The period from the spring of 1968 until the summer of 1970 was a crucial phase in
SIMULA 67’s life. The Control Data implementations were on the way, but SIMULA
would not exist unless we got it onto IBM and Univac, and this was something which we

‘“Existing’’ language:

— available on most of the
major computer systems

— being used over a long
period of time by a
substantial number of
people throughout the world

— having a significant impact
upon the development of
future programming languages.

Frame 9

486 | Part IX

Transcript of Presentation

Condition for ‘‘existence’” —
‘“‘high standard’’:

— Compilation and run time
execution speeds comparable
with best ALGOL 60 compilers.

— Availability of comprehensive
and well written documentation
and educational material.

— The existence and effective
operation of distribution and
maintenance organizations
for the compilers.

Frame 10

had to do at the Computing Center. And we were in a difficult situation at that time, de-
scribed in the paper.

In the summer of 1970 the NCC compilers had passed their *‘point of no return’’; it was
more costly to drop them than to complete them. Still, our resources were limited, as
shown on Frame 11.

For this reason it was essential for SIMULA’s success that we already in 1967 had de-
signed an organizational strategy which was carried out during the subsegent five years
[Frame 12].

The Norwegian Computing Center was at all stages, except a brief interval, very loyal to
the SIMULA effort. And when you are shown loyalty, you also feel loyalty in return. Cap-
tain Grace Hopper concluded her opening address by expressing her gratitude and dedica-
tion to the organization she had served. I feel the same towards the Norwegian Computing
Center and our comrades there. I could stop here, but I have to thank some of those out-
side the Norwegian Computing Center who were essential to the -success of SIMULA.
What Tl present to you is my own ‘‘short list”” of names. Ole-Johan’s may be slightly
different, so I’ll give it to you as my list. '

First of all—and underlined—is Jan V. Garwick, the father of computer science in Nor-
way. He was Ole-Johan’s and my own first boss, and we are in great professional debt
to him. Then follows a series of people at that time associated with Univac. Without
Univac’s immediate interest at an early stage, SIMULA would at least have been seri-
ously delayed. :

Stig Walstam brought us in contact with key Univac people in May 1962, as, e.g., Bob
Bemer who listened for twenty minutes and then interrupted me by stating ‘‘Why don’t
you go to Munich [the IFIP World Conference in Munich] and discuss it?”’ And he was
interested in discussing negotiations with Univac. But then Jim Nickitas, the man who got
the whole thing started within Univac, the man who had faith in us at the Computing Cen-

Norwegian Computing Center:
120 persons
IBM SIMULA team:
7 persons (peak)
Univac SIMULA team:
2 persons
Frame 11. Resources.

SIMULA Session 487

Ole-Johan Dahl

Strategy:

— getting SIMULA 67 implemented
on IBM, Univac and Control Data
computers

— SIMULA Common Base Conference
(June 1967) and
SIMULA Common Base Language

— SIMULA Standards Group (SSG)
— Association of SIMULA Users (ASU)

— SIMULA Newsletter
Frame 12

ter, and was material in the Computing Center getting the 1107 computer. Al Paster, our
main contact during our work with the concept. Bernie Hausner, staying with us for a
while, and telling us about SIMSCRIPT. We learned from it; we copied it to a slight ex-
tent, and we learned what we wanted to be different. Joe Speroni behind our ALGOL
compiler for our SIMULA I; Don Knuth, John McNeley—who very generously sup-
ported us. Eugen I. Yakovlev and Kirill S. Kusmin in the Soviet, at the Zentralniya Eko-
nomika Mathematicheskiya Institut in Moscow. Then Tony Hoare who is the single
person whose ideas have meant most to us. Jean Ichbiah has done a big job in telling other
people about SIMULA. Robin Hills, the first chairman of the Association of SIMULA
Users. Jacob Palme . . . (I understand from the Johnny Carson show you have a big re-
search project going on here in the states: trying to develop a T-shirt without anything
printed on it! Henry Tropp has asked us to give references. I'm loyal to that. But it has not
been developed in Sweden, and Jacob Palme is a person who has SIMULA 67 on his
T-shirt.) But he has done very very much more. There are many others, and I’ll use my
leeway by ending up and saying—above all—well, it is at the bottom, but it is in fact, on
top—ALGOL 60. Our gratitude first and foremost goes to ALGOL 60, and to all of the
elegance and clearness which this language has, and which we have tried to carry over in
SIMULA. Thank you.

TRANSCRIPT OF DISCUSSANT'S REMARKS

BARBARA Liskov: As I’m sure you’re all aware, SIMULA was in fact a two-man project.
The other member of this team was Ole-Johan Dahl, and he’s going to be a discussant
for SIMULA today. At the time that the ideas for SIMULA came up, he was working for
the Norwegian Defense Research Establishment for Jan Garwick. As a matter of fact, he
was working on an implementation of an ALGOL-like high-level language that was going
to be implemented—if I have this correctly—on a machine with 1000 words, and a drum
of 16K words. Anyway, in 1962, Ole-Johan Dahl moved to the Norwegian Computing
Center and started working full-time on SIMULA. Today he’s Professor of Informatics at
the University of Oslo and his primary research interest is in program specification and
verification. ’

OLE-JoHAN DaHL: I would like to use another few minutes in talking about ALGOL and
its surprisingly many kinds of applications, especially of course the block concept of

488 Part IX

Transcript of Discussant’s Remarks

ALGOL, which turned out to be able to model all we felt that we needed for simulation
models—that was the first SIMULA language. It also could be extended to the more -
general purpose class concept of SIMULA 67.

I have listed five different kinds of uses of blocklike constructs in SIMULA 67 all under
the disguise of what we call a class or class body. 1 know that SIMULA has been criticized
for perhaps having put too many things into that single basket of class. Maybe that is cor-
rect; I'm not sure myself. But it was certainly great fun during the development of the
language to see how the block concept could be remodeled in all these ways.

So, the first and simplest instance of class is of course the pure data structures that you
have in languages such as Pascal, ALGOL 68 and others; recordlike things, which you get
out of an ALGOL block simply by deleting the block tail, keeping the declarations of vari-
ables and arrays. :

The next example can be called ‘‘generalized data objects.’’ You get them by including
not only variable declarations in your class body block head, but also procedure declara-
tions. The discovery was made in 1964—1965 that these so-called ‘‘procedure attributes’’
could be useful. And people like Tony Hoare have since shown us that what is really lying
there is the concept of an abstract data object, with the procedures as abstract operators.
The only thing we needed to do to ALGOL in order to make blocks look like data objects,
was simply to devise a naming mechanism for block instances. And a mechanism of look-
ing into blocks from the outside.

Next on my list is the process concept. It merely required us to include some very sim-
ple mechanisms for coroutinelike sequencing in addition to ALGOL’s procedure activa-
tion mechanism. Havmg that, we had all the power of ALGOL programs going in quasi-
parallel.

Then, the fourth on the list is the class preﬁxes Now this was, as Kristen mentioned, a
less trivial addition. The idea of prefixing one class by another one, and thereby compos-
ing a composite object consisting of two layers. But this enabled us to use the class mecha-
nism for a kind of abstraction, collecting common properties of different kinds of objects
into a single class, and making it available for use at later times as a kind of plug-in unit,
where a given class could be extended into more concrete classes at later times by adding
more properties.

And finally, the prefix mechanism could be used for ordinary in- _line blocks too. This
turned out to be a very interesting application, rather like collecting together sets of inter-
related concepts into a larger class, and then using that larger class as a prefix to a block.
The class would function as a kind of predefined context that would enable the program-
mer to program in a certain style directed toward a certain application area. Simulation, of
course, was one of the ideas that we thought of, and we included a standard class in the
language for that particular purpose.

There are two more points on my list of mechanisms that we proposed for inclusion in
the language at the Common Base Conference which was held in June or late May of 1967.
To use these class objects as generalized variables so that the concept of a class could be
used rather like a generalized type concept, like integer and real. And finally we also saw
the possibility of unifying the class and procedure concepts.

Now, as I said, it was great fun to see how easily the block concept could be remodeled
and used for all these purposes. It is quite possible, however, that it would have been
wiser to introduce a few more specialized concepts, for instance, a ‘‘context’’ concept for
the contextlike classes. As a matter of fact, one of our disappointments with the usage of

SIMULA Session 489

Transcript of Question and Answer Session

SIMULA during the past years is the relatively little usage of the context-building capabil-
ity of the language. Maybe this is also due to the fact that it is not at all an easy task to
make good contexts. Thank you.

TRANSCRIPT OF QUESTION AND ANSWER SESSION

BARBARA Liskov: There have been a number of questions, and I'll start with this one
from Richard Miller: ‘Do you think the fact you were in a small group and country work-
ing on a project that many other groups were also working on helped push you on to the
high quality work that you wanted?’’

KRisTEN NYGAARD: Yes. I think that we benefitted from the fact that we had very com-
plete control in a small group of what we were doing. I believe in team development of
such a project. I'm skeptical of committee projects in designing languages. ALGOL 60
succeeded. They had a number of very brilliant people. They succeeded also because they
had an apparently innocent but in fact very cunning secretary with devious manners, Peter
Naur, to help the whole thing succeed. I address this comment also to the television cam-
eras, which (we are told) records for history.

Liskov: I have a question from Richard Nance at Virginia Tech: “Using the Kiviat—
Lackner classification of simulation languages, both SIMULA and GPSS are described as
process interaction languages. GPSS is narrowly focused on the interaction of temporary
objects with permanent objects. Did SIMULA evolve from the same view, and how well
can SIMULA treat interaction among permanent objects?’’

OLE-JoHAN DAHL: I think it is fair to say, looking back now, that the conceptual origins
are much more similar than we thought they were at the time. Our starting point was also
the concept of a network through which things were flowing, and as I have understood,
that is also the basic view of GPSS. About the distinction between temporary and perma-
nent objects, I really can’t see any great distinction between them. To me, a permanent
object is an object that gets created at the start of an execution and lasts the whole time.

Liskov: Here’s another question from Richard Miller: ‘‘Could you comment further on
the possible use of parallelism in SIMULA programs? When was this idea thought of ?”’

NvyGaarD: I guess that you are talking about real physical parallelism as opposed to
quasi-parallelism. Quasi-parallelism, to portray parallelism, was of course essential from
the very outset. It occurred to us that this could be carried over to true parallelism, and in
fact, there exists a note, in Norwegian, from 1963, about developing SIMULA into a real-
time language. When we discovered it, among much dust, I reread it with quite some ner-
vousness. But it turned out that the ideas there were not too bad, but of course we didn’t
at that time at all really understand all the problems related to physical parallelism. I think
that we could incorporate such features in SIMULA, but I don’t think it will be done.
There are versions of SIMULA now with extended operating systems for running pro-
grams in parallel, but not in the nature of, say, concurrent Pascal.

Liskov: Thank you very much.

490 Part IX

Full Text of All Questions Submitted
FULL TEXT OF ALL QUESTIONS SUBMITTED

ULF BEYSCHLAG

SIMULA turned out to be a successful, nearly profitable programming language
project. This without the strong backing of a manufacturer or a widespread academic
community. What problems did you face and how do you see the chances for further
projects with these characteristics?

PER BRINCH HANSEN

Many computer scientists now refer to SIMULA as the origin of the idea of abstract
data types, that is, as a program module that makes a clear distinction between ex-
ternally available abstract operations and internal implementation details of these
abstract concepts. Was this viewpoint evident to you and Dahl from the beginning or
was it a happy (unexpected) consequence of the SIMULA 67 class concept?

RICHARD MILLER

The class concept of SIMULA has become the prototype of the data abstraction
techniques now coming into vogue in languages such as CLU and ALPHARD. Was
this usage of the class apparent during the design? When did it become apparent?

(For Professor Dahl in particular, but. . . .) Could you describe your attempts
(and eventual success) in developing the multiple stack concept for SIMULA. In par-
ticular, what options were available to you at the time and how were they used or
eliminated? '

Do you think the fact that you were in a small group and country working on projects
that many groups were also working on helped push you on to the high quality work
that you wanted?

RicHARD NANCE

Using Kiviat—Lackner classification of simulation languages, both SIMULA and
GPSS are described as process interaction languages. GPSS is narrowly focused on the
interaction of temporary objects with permanent objects. Did SIMULA evolve from
the same view? How well can SIMULA treat interaction among permanent objects?

SIMULA Session 491

