Hvordan referanser kan etablere
grunnlaget for en artikkel
(og en masteroppgave)

How references may establish a
sound foundation of an article
(and maybe a thesis)

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

For Permissions. please email: journals.permissions@oupjournals.org

d0i:10.1093/comjnl/bxh068
.

FLORENTIN IPATE

Department of Computer Science and Mathematics, University of Pitesti, Str Targu din Vale 1,
0300 Pitesti, Romania
Email: fipate@ifsoft.ro

A cover automaton of a finite language L is a finite automaton that accepts all words in L and

possibly other words that are longer than any word in L. An algorithm for constructing a minimal

cover automaton of a finite language L is given in a recent paper. This paper gaes a step further by

proposing a procedure for constructing all minimal cover automata of a given finite language L. The

concept of cover automaton is then generalized to a form of extended finite automaton, the stream
X-machine, and the procedure is extended to this more general model.

Received 8§ January 2004, revised 30 September 2004

(The Computer Journal, 48(2), 157-167)

1. INTRODUCTION

This paper goes a step further by giving a procedure for
canctmetine all minimal caver antamata of a oiven finjte

Finite automata [1. 2. 3] are widely used i
of computing. ranging from lexical analysis
protocol testing. Finite automata are know:
regular languages [4. 5]. However. in many a
finite automata only finite languages are used. 7

Finite automata [1, 2. 3] .

of
S).

hal

sfore called 1]'7&1“0!’\7 and a nmmber Oi’ fransifion s-_l)eanee11

states of a finite automaton (FA) that accepp—=~~*
is at least one more than the length of the
language and may be exponentially large
On the other hand. if we do not restricf
accept only the given finite language buf
extra words that are longer than the lo

REFERENCES

[1] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to
Automata Theory, Languages and Computation. Addison

language. then the number of its states m Wesley, Reading, MA.
reduced. In most applications the maxis [2] Salomaa, A. (1969) Theory of Automata. Pergamon Press,
words in the language is known and the syj Oxford

of the length of the words processed. so
will usually be adequate. This is the
automata for finite languages.

[3] Cohen, D.I. A. (1996) Introduction to Computer Theory (2nd
edn). John Wiley & Sons, New York.

Informally. a cover automaton of a finife Tanguage L 15 an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

T ST SO TE O OIS TS S IO To L X =V ST TP S SISO T oI

=

into more complex. more detailed implementation-oriented
versions have been developed [14, 15]. Furthermore. several
models of communicating SXMs have been devised and used
in real applications [16. 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which. if satisfied. guarantee. under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1. 2. 3] are widely ug
of computing. ranging from lexical anal
protocol testing.

L ire for
regular languages [4. 5]. ma

Finite automata are 11 _ -
regular languages [4. 5]. However. in many applications o : < cribes

finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language
is at least one more than the length of the longest word in the

493 thhse Taenetls

a system as a finite set of states. each with an internal
store called memory. and a number of transitions between
the states. A transition is ftriggered by an input value,
produces an outont value and mav alter the memorv. An

language and may be exponentially largg L1
On the other hand. if we do not restricf
accept only the given finite language buf
extra words that are longer than the lo

[4] Salomaa, K., Yu, S. and Zhuang, Q. (1994) The state
complexity of some basic operations on regular languages.
Theoretical Computer Science, 125, 315-328.

language, then the number of its states m
reduced. In most applications the maxis
words in the language is known and the syj

[5] Yu, S. (1995) Regular Languages, Handbook of Formal
Languages. Springer Verlag.

of the length of the words processed. so such an automaton
will usually be adequate. This is the idea behind cover
automata for finite languages.

Informally. a cover automaton of a finite language L is an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

d SPECIICATIoIl IMITUIOU, ©SPECIally I0T HOITCTAaclIve SYSIEIILS.
A tool to support the creation of SXM specifications has
been constructed [13]. The refinement of SXMs has been
investigated and techniques for refining given specifications
into more complex. more detailed implementation-oriented
versions have been developed [14, 15]. Furthermore. several
models of communicating SXMs have been devised and used
in real applications [16. 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which. if satisfied. guarantee. under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

The concept of minimal cover automaton of a finite Py giving a procedure for

utomata of a given finite

language 1s introduced in [6] and it 1s shown that there may p generalized to a form of

R X- hines (SXMs).
be several minimal cover automata of the same language that |7 rchines (S
= = le [8. 9, 10] that describes

are not isomorphic. Furthermore. [6] provides an algorithm fs. each with an intemal
per of transitions between

that, for a finite language L (given as an FA that accepts fered by an input value,

NN — . . e 8 +aqe My alter the memory. An
L or as a cover automaton of L). constructs a minimal COVer [{ . accociated FA) in

automaton of the language. An improved algorithm (in terms [ionnames (the processing
. : : Ay . ® 2 bine the dynamic features
of complexity) is also presented in [7].

@ structures, thus sharing
reduced. In most applications the maximum lengih ol the

IS UCIINIITS Ul UUUID U155 WwuIr S.

Various case studies
vorsinthelangiazel [6] Campeanu, C., Santean, N. and Yu, S. (1999) Minimal cover
will usually be adeq automata for finite languages. Theoretical Computer Science,
) 267,316
P4 ataccspts @l %) [7] Paun, A, Santean, N. and Yu, S. (2001) An O(n?) algorithm
L is a cover automato for constructing minimal cover automata for finite languages.

LNCS, 2088, 243-251.

In many cases. a mini
The concept of minimal cover automaton of a finite that it is possible to derive test sets from an SXM specification

smaller size than the 1

language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

which. if satisfied. guarantee. under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1. 2. 3] are widely used in many areas
of computing. ranging from lexical analysis to circuit and
protocol testing. Finite automata are known to compute
regular languages [4. 5]. However. in many applications of
finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language

This paper goes a step further by giving a procedure for
constructing all minimal cover automata of a given finite
language L. The procedure is then generalized to a form of
extended finite automata. called stream X-machines (SXMs).

An SXM is a type of X-machine [8. 9, 10] that describes
a system as a finite set of states. each with an internal
store called memory. and a number of transitions between

isatle S S - by an input value,
langua This paper goes a step further by giving a procedure for flee‘ a‘g:o::‘::t‘:c‘i”%’A)A’u:
On thg J - . p
accept| CODstructing all minimal cover automata of a given finife james (the processing
exua | Janguage L. The procedure is then generalized fo a form of ki g anany
angua s) ; g
reducd €Xtended finite automata. called stream X-machines (SXMS). Various case studies
words s : s : ’ - . alue of the SXM as
of the An SXM is a type of X-machine [8. 9. 10] that describes | interactive systems.
wilw 3 system as a finite set of states. each with an internal [' *Pecifications has
autom 25 it of SXMs has been
mid Store called memory. and a number of transitions between G given specifications
FA tha : R 53 . - . 5 lementation-oriented
~ia the states. A transition is triggered by an input value. g iermore. several
Lisa cEx-a.- St o b T T b e st itk bt models of communicating SXMs have been devised and used
Inmany [8] Eilenberg, S. (1994) Automata, Languages and Machines,
smaller o specify a system is

The Vol. A. Academic Press, New York.

[9] Holcombe, M. (1988) X-machines as a basis for dynamic
system spectfication. Software Engineering Journal, 3, 69—76.

languag
be sevel
are not

n SXM specification
certain constraints.
with respect to the
1g these constraints

that. foi [10] Holcombe, M. and Ipate, F. (1998) Correct Systems: Building [ions that the SXM

L or as
automar

a Business Process Solution. Springer Verlag, Berlin.

leteness and output-
of SXMs that meet

of complexity) is also presented in [7].

these conditions is therefore of particular interest and has

