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A cover automaton of a finite language L is a finite automaton that accepts all words in L and

possibly other words that are longer than any word in L. An algorithm for constructing a minimal

cover automaton of a finite language L is given in a recent paper. This paper gaes a step further by

proposing a procedure for constructing all minimal cover automata of a given finite language L. The

concept of cover automaton is then generalized to a form of extended finite automaton, the stream
X-machine, and the procedure is extended to this more general model.
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Informally. a cover automaton of a finife Tanguage L 15 an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].
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into more complex. more detailed implementation-oriented
versions have been developed [14, 15]. Furthermore. several
models of communicating SXMs have been devised and used
in real applications [16. 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which. if satisfied. guarantee. under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has
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of the length of the words processed. so such an automaton
will usually be adequate. This is the idea behind cover
automata for finite languages.

Informally. a cover automaton of a finite language L is an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].
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A tool to support the creation of SXM specifications has
been constructed [13]. The refinement of SXMs has been
investigated and techniques for refining given specifications
into more complex. more detailed implementation-oriented
versions have been developed [14, 15]. Furthermore. several
models of communicating SXMs have been devised and used
in real applications [16. 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which. if satisfied. guarantee. under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has
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